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Abstract. The quantum state diffusion model inwoduced in an earlier paper represents the 
evolution of an individual open quanNm system by an 16 diffusion equation for i o  quantm 
slate. The diffusion and drift terms in this equation are derived from interaction with the 
environment. In this paper two localization theorems are proved. The dispenion entropy theorem 
shows that under~special conditions, which are commonly satisfied to a good approximation. 
the mean quantum dispenion entmpy, which measures the mean dispenion or delocalization of 
the quantum states. decreases a t  a rate equal to aweighled~sum of effecti\;e interaction rates, 
so that the localization always increases in the mean, except when the effective interaction with 
the environment is zero. The general localization theorem provides a formula for more general 
conditions. 

1. Introduction 

The motion of ensemble of Brownian particles starting at the same initial point can be 
represented by a Gaussian probability distribution with mean squared deviation that increases 
linearly with~time. This averaged picture contrasts with the more detailed explicit picture 
of a single particle that moves along a very crooked path in space, according to a simple 
stochastic It6 equation. 

In [ l ]  we introduced a diffusion model for the quantum~state of an open quantum 
system. which is summarized in section 2, and showed  how^ this model could be applied to 
investigate various physical processes. As for the Brownian particle, the solution of the It6 
equation for the state vector for an individual system gives a more.detailed explicit picture 
of these processes than the usual pictuk based on the evolution of the density operator for 
an ensemble of systems. This diffusion model is an extension of earlier work by Gisin [2,3] 
and Di6si [4]. 

What the density operator gains in mathematical elegance it loses in physical directness. 
Instead of looking at the deterministic evolution of the density operator p representing an 
ensemble of systems, we look at the stochastic diffusion of a quantum state representing 
an individual system of the ensemble, as shown explicitly in the illustrations of 111. This 
picture of the evolution of an individual system is particularly advantageous in the theories of 
absorption and measurement. Lomlizution is a stochastic process caused by the interaction 
of the system with its environment, which tends to concentrate the diffusing state vector 
in a particular subspace or chunnel of the state space, whether or not there is a measuring 
device. Localization in position or configuration space is one important example, but it is 
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not the only one. We use localization, rather than reduction because we need to refer to 
the condition of being localized, and not just the process by which it takes place. 

In this paper we prove two basic theorems on localization for the state diffusion model 
and, in the following paper, we show how to apply the model to a wide range of physical 
processes for which localization is important. 

In section 3 we define the quantum dispersion entropy, which is a measure of the 
dispersion or delocalization of a pure quantum state. We then state and briefly discuss the 
two localization theorems, both of which are proved in section 4. The dispersion entropy 
theorem applies under restricted conditions and states that the mean rate of decrease in the 
dispersion entropy of quantum states is equal to a sum over weighted effective interaction 
rates. Consequently the mean over the ensemble of the localization never decreases under 
these conditions. The general localization theorem provides a formula for less restrictive 
conditions. 

The final section provides a discussion and comparison with other theories, including 
those of Zeh et al [5 ] ,  Zurek [6]; Ghirardi et a1 [7], Dalibard, Carmichael [8] and their 
collaborators. Detailed studies of particular physical processes are left to the next paper. 

The space of states I@) of a quantum system may be divided or partitioned into 
orthogonal subspaces or channels. Each such division  into channels is a partition of the 
state space. The channels are labelled by the projectors Pk that project onto them, where 

N Gisin and I C  Percival 

Pk = I .  
k 

These parts are often spatially separated and this is the most important example. It 
applies, for example, to experiments with spatially separated channels, like the Stem- 
Gerlach experiment. 

A pure quantum state has quantum statistical properties with respect to these channels. In 
particular, each projection operator has a mean or expectation and a mean square deviation, 
and the state has an entropy which measures the dispersion or delocalization among the 
channels. These are the quantum expectations, quantum mean square (QMS) deviations and 
the quantum dispersion entropy. For ensembles of quantum states there are also ensemble 
means, represented by M, ensemble mean square deviations and ensemble entropies, with 
properties very different from the quantum versions. There are also combinations of quantum 
and ensemble statistical properties. These distinctions are necessary for state diffusion 
theory. Because of the consistency of the state diffusion theory and the orthodox theory 
using density operators, ensemble means of the quantum probabilities are the same as the 
means obtained from density operators in the usual way. However, many quantities that 
can be defined when quantum and ensemble statistical properties are separated cannot be 
defined using the density operators alone, for example the ensemble mean of the quantum 
mean square variation or the ensemble mean of the quantum dispersion entropy. 

As for Brownian motion, the dynamics of arbitrary initial distributions can be expressed 
in terms of the dynamics of an initial &distribution in which all members of the ensemble 
have the same initial quantum state I@(O)). All state vectors are supposed normalized. 
We state the two theorems for this special case. The generalization to an arbitary initial 
distribution is immediate, by taking a mean over the initial distribution. 

The quantum expectation of the projector P: 

(@lPl+)  = (P)* = ( P )  = P (1.2) 

is the probability of the system in state I@) being in the channel P. Unless otherwise 
specified all expectations refer to the state I+). The extent to which a state I@) is delocalized 
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in the subspace of P or of its complementary projector I - P can be measured by the QMS 
deviation 

(Ap)’ = (Pz) - (P)’ = ( P )  - (P)’ = ( P ) ( I  - P )  = p ( 1 -  p )  (1.3) 

which is symmetric in P and its complement. 
The extent to which the state I@) is delocalized or dispersed for an arbitrary partition 

into channels Pk is conveniently measured by.the quantum dispersion entropy of the state 
with respect to the partition, given by 

Q = Q(l@), pk) = - z P k l n P k  
K 

where the quantum probability pk is given by 

(1.4) 

The system localizes with respect to  the channels P and I - P or the channels pk when 
the QMS deviation or the quantum dispersion entropy decreases with time. 

Depending on the nature of the system and its interaction with the environment, 
localization may take place with respect to many different variables, but localization in 
position is particularly important because interactions are localized in position space to a 
greater extent than for other dynamical variables. Relativistically, the same localization is 
a consequence of the impossibility of direct interaction over spacelike intervals [3,9]. 

The lenvimnment’ in our theory is not necessarily separated from the system in position 
space. For example, an electromagnetic field in a cavity can act as an environment for the 
atoms in the cavity and vice versa. An example of the first is the theory of~radiative 
Iransitions of atoms, and the theory of gas lasers is ‘an example of the second. 

In quantum state diffusion theory it is helpful to consider the following principles: 

Principle 1. Interactions with independent parts of the environment lead to statistically 
independent quantum state diffusions. 

Principle 2. Amplitudes ffuctuate where probabilities are conserved where there is an 
interaction with the environment in which the overall probability of being in a subspace of 
the state space is conserved, the corresponding amplitudes of the state of individual systems 
of the ensemble fluctuate, unless the effective rate of interaction of the system with its 
environment is zero. 

Principle 3.  Probability conservation and fluctuation together imply localization ~ (with 
special exceptions). 

Principle 4 .  Localization of states in position space follows from locality of interactions. 
The rest frame of the localization is determined, by the environment. 

These principles are discussed in more detail in section 3. 



2236 

2. Quantum state diffusion 

Quantum state diffusion represents the evolution of a quantum system in interaction with its 
environment through a unique correspondence between the deterministic Bloch equation for 
the ensemble density operator p and an Ita diffusion equation for the normalized state vector 
I@) of an individual system of the ensemble [1,2,4]. The correspondence ensures that the 
diffusion equation and the Bloch equation give the same physics. If H is the Hamiltonian 
representing the dynamics of an open system, and L, are the environment operators which 
represent the interaction of the system with its environment, then the Bloch equation is 

N Gisin and IC Percival 

The corresponding quantum state diffusion equation is a stochastic differential equation for 
the normalized state vector I@), whose differerential It8 form is 

where (Lm)$ = ($IL,I@) is the expectation of L, for state I@) and the density operator 
is given by the mean over the projectors onto the quantum states of the ensemble, 

P = M I ~ ) ( + I  (2.3) 

where M represents a mean over the ensemble. 
The first sum in (2.2) represents the 'drift' of the state vector and the second sum the 

random fluctuations, both due to the interaction of the system with its environment The 
dem are independent complex differential random variables, each of which has normalized 
independent white noise in its real and imaginary parts, leading to an isotropic Brownian 
motion or Wiener process in the complex tm-plane, satisifying the complex relations 

Mdtm = 0 ( 2 . 4 ~ )  

M(dtn dtm) = 0 M(G$ df") = Snm dt. (2.4b) 

The complex Wiener process is normalized to unity, so the independent real and imaginary 
Wiener processes are each normalized to i. Notice that this is a different normalization 
from that of [I], and that there is also a different normalization for the operators L in 
equations (2.1) and (2.2). 

The environment operators L, of the Bloch equation are obtained by taking a trace 
over the states of the environment, assuming that the time constants for the interaction with 
the environment are sufficiently short for the evolution of the system to be represented by 
a Markov process. Like the Bloch equation, the state diffusion equation is dependent on 
this approximation. They are also both dependent on the choice of the bounday between 
the system and its environment, but in many circumstances a choice can be made so that 
the dependence is weak. 

There is a close analogy between the state diffusion theory of quantum mechanics 
and classical circuit theory. An electrical circuit includes both Hamiltonian elements, 
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with capacitance and inductance, and non-Hamiltonian elements, such as resistors, which 
represent the interaction of the system with its environment. Similarly the environment 
operators of the state diffusion theory represent particular types.of interaction of the system 
with its environment. There is no need to carry out a detailed physical analysis of these 
interactions before attempting IO solve a problem in the theory of open quantum systems, 
as shown by example in [I]. 

3. Localization theorems 

The theorems are the dispersion entropy theorem and the general localization theorem. 
Suppose there are two or more channels defined by projectors Pk satisfying (1.1). and we use 
a representation in which every base vector lies entirely in one channel. A general operator 
has non-zero off-diagonal elements which couple the channels. A block diagonal operator 
has no such non-zero elements, so that the channels are uncoupled. Even more special is 
a local operator which consists of only one diagonal block, with non-zero elements in one 
channel only: In the dispersion entropy theorem  the^ Hamiltonian is block diagonal and 
the environment operators are local. In the less powerful general localization theorem the 
Hamiltonian is general or block diagonal and the environment operators are block diagonal. 

For the dispersion entropy theorem the Hamiltonian satisfies 

[ H ,  Pk] = ~ o  (3.1) 

and every environment operator is confined to one of the channels. It is then denoted L k j ,  

where 

Lkj = PkLkjPk. (3.2)~ 

This is the case of separable channels, since each channel and its environment then operate 
independently. Neither the Hamiltonian H nor the environment operators Lkj couple the 
channels, so the ensemble mean M ( P k )  is conserved. 

A normalized state vector [e) for the whole system can then be represented as a linear 
combination of normalized state vectors [ek) for each channel with coefficients ak, so that 

~~ 

(3.3) 

where 

Q k l ' k k )  = PkI$') (3.4) 

b k l z  = (PA)$ Pk~. (3.5) 

The expectations of the interaction operators are  then^ 

(Lkj) = (Lkj)$ = ($'lLkjl$) (3.6) 

The effective interaction rate in channel k ,  is then defined as 

(3.7) 
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which has the dimensions of inverse time. 

in terms of the quantum dispersion entropy Q for the partition 

N Cisin and I C  Percival 

It is convenient to define the magnitude of the dispersion or delocalization for state I$) 

Evidently the smaller the entropy the greater the localization is, so an increase in mean 
localization is represented by a decrease in mean dispersion entropy. 

The dispersion entropy theorem then states that the mean rate of decrease of quantum 
dispersion entropy for the partition is equal to a weighted sum over effective interaction 
rates. 

where the second equality is expressed in terms of non-singular normalized interaction rates 
&/pi .  Consequently under the conditions of the theorem, the mean of the dispersion 
entropy never increases. 

In the important case of only two complementary channels, 

The mean quantum dispersion entropy always decreases, so the localization always 
increases, unless the effective interaction rate is zero or the localization is complete. Some 
care is needed in applying this principle. For a non-zero interaction it is necessary that the 
system affects the environment. So the scattering of a particle by a fixed scattering centre 
has zero effective interaction rate', since there is zero recoil, and if the scatterer is very 
heavy, the effective interaction rak is very small. These cases can be represented exactly 
or approximately by an additional Hamiltonian term, not by environment operators. The 
same goes for the focusing and diffraction of photons by non-absorptive optical apparatus, 
or the electrons in an electron microscope. where the recoil of the apparatus is negligible. 

If the effective interaction stops, as, for example, when dissipation produces a permanent 
ground state, then so does the localization. For a number of similar interactions in a single 
channel, the effective interaction rate is given by the sum of the rates for each interaction. 

In the general localization theorem, the Hamiltonian can couple the channels and the 
environment operators L, are block diagonal in the subspaces, so that 

PkLm = LmPk = PkLmPk. (3.11) 

The general localization theorem for an intital pure state then says that for each projector 
Pk the corresponding ensemble mean of the QMS deviation is 

(3.12) 

If the Hamiltonian, like the environment operators, is block diagonal in the subspaces 
of Pk, then the first term is zero, and the system weakly localizes in the space of every pk: 

d 
- - M ( A P ~ ~  6 o (3.13) df 
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(3.14) 

which is a very special case. 
The general localization theorem for an initial ensemble of states is obtained by taking 

the ensemble mean of (3.12) on both sides. 
Now consider the four principles given in the introduction. There is no need for a 

measurement to take place for there-to be localization. Independent parts of the environment 
give different sets of environment operators L,, and by the quantum state diffusion 
equation (2.2) these lead to diffusions proportional to different dt,,,, which are statistically 
independent. This is the principle 1, which can be applied to the diffusion of a particle by 
a gas or the absorption of a particle by a screen. 

Principle 2 follows directly from the state diffusion equation '(2.2) for a given Ill.). 
Amplitude fluctuations always occur unless 

LmI$) = (L,)Ill.) for all m (3.15) 

which is clearly exceptional. If the Hamiltonian H and the environment operators L, 
are block diagonal, so that they do not couple the subspace of the projector P and its 
complement, the ensemble probability of being in either subspace is conserved, but the 
magnitude and phase of the amplitudes PI+) and ( I  - P)l*) both fluctuate, unless (3.15) 
is satisfied. 

Principle 3 now follows directly from the theorems. 
Now consider the special case of position localization, as in principle 4. In this case the 

projectors Pk project onto mutually exclusive regions of position space, and provided these 
regions are not too small, the coupling between the different parts of the environment in 
the different regions can be neglected. Furthermore, it is a consequence of the approximate 
locality of interactions~that the environment for the region Px has no effect on the system 
when the system is in a different region Pp,, so the conditions of the dispersion entropy 
theorem are easily and very generally satisfied for the position variable. In any frame that 
moves significantly with respect to the physical environment, localization is not'pemanent, 
because the system will necessarily move from one region to another, spoiling the position 
localization. So the environment provides the reference frame for position localization. 

4. Proofs of the localization theorems 

These proofs depend on the fact that It8 equations are 'non-anticipating', so that MX d$ = 0 
for any X. 

First, as a very simple example, which illustrates the main principles of the proofs, 
let Ill.) be the state vector of a system with zero Hamiltonian, which interacts with its 
environment through a single environment operator L,  so that the state diffusion equation 
is 

Id$) = ( ( L t ) L - 4 L T L - ~ ( L t ) ( L ) ) I l l . ) d t + ( L -  (L))Ill.)dt. (4.1) 

Suppose that L operates only in the subspace of the projector P ,  so that 

L = P L  = L P  = PLP.  (4.2) 
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The system weakly localizes into the space of the projector or its complement, in the sense 
that the change of the mean square deviation of the projector is less than or equal to zero. 
To show this, from (l.3), it is enough to show that 

N Gisin and I C Percival 

Md(Ap)’ = Md(p - p’) = M(1- 2 p )  dp - M(dp)’ (4.3) 

is not positive. 
In the following derivations all terms of order higher than dr and all fluctuations, with 

zero mean, of order higher than (&)I/’, are neglected, so equations (2.4b) can be used 
without the ensemble means. The value of dp  is 

d p  =d($lPlllr) 

= (($lPld$) +E)+ W l P l W )  

= ( ( L ~ ( L ) -  ; ( L ~ L ) -  ~ ( L + ) ( L ) ( p ) + c c ) + ( ( ( L ) -  (L)(P))@+cc) 

+ K(L+ - (Lt)) P(L - (L))) dl 

= (QIL - (L)PltCr)dF +cc 
= (1 - (P))( L) @ + cc 

where cc means the complex conjugate of the terms to its left. 
It follows that, since MX d t  = 0 for any X, 

(4.4) 

(4.5) 

from which the required~ result (4.3) follows. Notice that, although the probability over 
the whole ensemble of being in the P channel cannot be changed by interactions with 
the environment that couple only states within the channel, for a single member of the 
ensemble the probability p of being in the subspace almost always changes as a result of 
such interactions. 

Now consider the general localization theorem, in which there is a non-zero Hamiltonian 
H and there are many orthogonal channels with projection operators Pk satisfying 

Pk Pf = Pt Pk = 8kpPt Pk = I. (4.7) 
X 

The environment operators L, are block diagonal in the subspaces of the channels, so 

PkLm = LmPk PkLmPk. (4.8) 

In this case the Hamiltonian term can prevent the localization, so that the mean change in 
the QMS deviation can have either sign. 

The effect of the Hamiltonian is additive and easy to evaluate, and the analysis for 
the many environment operators follows the same lines as for the simplest case of one 
environment operator, given by equations (4. lX4.5). In particular 

d(f‘k) = ((QIPklW) +CC) + (d$lPkld$) 



(4.1 1) 

which proves the general localization theorem. 

h, 
The dispersion entropy theorem follows from the general theorem. To second order in 

d(x Inx) = (1 + Inx) dx + (dx)’ / (b)  (4.12) 

but M dpk = 0, SO 

M d h  Inpd  = M(dp.dz/(2pd (4.13) 

and by definition (3.8) of the dispersion entropy 

(4.14) 



(4.15) 

(4.16) 

(4.17) 

which proves the dispersion entropy theorem. 

5. Discussion 

We have shown how the quantum state diffusion equations of an open system represent 
the process of localization in a subspace or channel of the state space explicitly. The 
localization due to the environment increases when the ensemble mean of the QMS deviation 
or the quantum dispersion entropy of the channel projectors decreases, and the two theorems 
demonstrate that this always happens unless the change is zero. Explicit formulae for the 
rates of change are obtained in terms of effective interaction rates. In this model localization 
is characteristic of the interaction of a system with its environment, whether or not that 
environment contains measuring apparatus or an observer. 

It may seem remarkable that the mean quantum dispersion entropy should behave 
contrarily to every other physical entropy under the conditions given here. But this is 
just a consequence of the remarkable properties of quantum mechanics, in which the wave 
properties of a system, which require it to be extended, are followed by particle properties, 
in which it is localized as, for example, in the two-slit experiment. The dispersion entropy 
theorem is a precise mathematical expression of these remarkable properties. The reduction 
of mean dispersion entropy is consistent with the increase in thermodynamic entropy because 
ensemble entropies increase as a result of the diffusion of pure quantum states and this more 
than compensates for the decrease in the mean over the quantum dispersion entropies of the 
individual pure states of the ensemble. 

The Hamiltonian term can increase the mean quantum dispersion entropy, and often 
does, so in general this entropy can either increase or decrease. 

In this picture the localization process appears explicitly, whereas in the usual picture 
the density operator gives an average over the localized states. The reduction of its off- 
diagonal elements due to the environment has been associated with the localization process 
before, as described in considerable detail by E h  [5 ] ,  Zurek [6] and their colleagues and 
collaborators, but they do not allow any modification of the SchrOdinger equation and, 
consequently, cannot represent the physical localization of the state vector of an individual 
system in one universe explictly. 
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Depending on the nature of the system and its interaction with the environment, 
localization may take place with respect to many different variables, but localization in 
position is particularly important because interactions are localized in position space to a 
greater extent than for other dynamical variables. This contrasts with the models of Ghirardi, 
Rimini, Weber, Bell and Pearle [7] in which position localization is a primary property that 
is introduced by hypothesis from the beginning. It is consistent with the quantum jump 
models of Dalibard, Castin and Molmer, and of Carmichael [8]. 

Acknowledgments 

We are grateful to H D Zeh and J Dalibard for sending material prior to publication. ICP 
thanks the UK Science and Engineering Research Council for financial support, and also 
the Quantum Optics Group of Imperial College London, Theoretical Physics at CERN and 
the Group of Applied Physics at the University of Geneva for stimulating discussions and 
hospitality whilst parts'of the research were being carried out. 

References 

[l] Gisin N and Percival I C 1992 The quantum state diffusion model applied to open systems J. Phys. A: Marh. 

See also Gisin Nand Cibils M 1992 J.  Phys. A: Malh. Gen. 25 5165-16 
[21 Gisin N 1984 Phys. Rev. Lerr. 52 165740 
[3] Gisin N 1989 Helv. Phys. Acra 62 363-71 
[4] Didsi L 1988 J. Phys. A: Math. Gen. 21 2885-98: 1988 Phys. Len. 129A 419-23 
[5] Zeh H D 1970 Found. Phys. 1 69-76: 1973 Found. Phys. 3 109-16 

Kubler 0 and Zeh H D 1973 Ann. Phys. 76 405-18 
Joos E and 2eh H D 1985 2. Phvs. B 59 223-43 

Gen. 25 5677-91; 1992 Phys. Leir. 167A 315-18 

Zeh H D 1992 Phys. Lett. A sub;nined 
Isl Zurek W H 1982 Phvs. Rev. D 26 1862-80: 1991 Pkvsics Today 44 36-44 
171 Ghirardi G-C, Rimin; A and Weber T 1986 Phys. Re;. D 34 4%-91 

Ghirardi G-C, Pearie P and Rimini A 1990 Phys. Rev. A 42 78-89 
Bell J S 1987 SchrJdinger. Centenary of a Polynwrh ed C Kilmister (Cambridge: Cambridge University 

Bell J S 1987 Speahbleand Llnrpeokable in Quannrm Mechanics (Cambridge: Cambridge University Press) 
181 Dalibard 1. Castin Y and Molmer K 1992 Phys. Rev. Lell. 68 580-3 

Molmer K. Castin Y and Dalibard J 1993 MonteCarlo wavefunciion method in quantum oprics J. Opt. Soc. 

Carmichael B H J private communication 
I91 Gisin N 1984 Phys. Rev. Len. 53 1776: 1990 Phys. Len. 143A 1 

press) 

Am. in press 


